KONSENTRASI LOGAM BERAT DAN RADIOAKTIF ALAMI DALAM RUMPUT LAUT DI PERAIRAN SEKITAR PULAU PANJANG, BANTEN

CONCENTRATION OF HEAVY METALS AND NATURAL RADIOACTIVE IN THE SEAWEED OF PULAU PANJANG WATERS, BANTEN

Junc Mellawati1, Niken Hayu Danti2 dan Sevi Sawestri3
1Pusat Kajian Sistem Energi Nuklir-BATAN, Jakarta
2Pusat Aplikasi dan Teknologi Isotop dan Radiasi-BATAN, Jakarta
3Balai Penelitian Perikanan Perairan Umum-Balitbang KP KKP, Palembang.

Email: june mellawati@yahoo.co.id

Received 24 March 2014, Accepted 29 May 2015

ABSTRAK

Berdasarkan Perda Provinsi Banten No. 2 Tahun 2011 tentang Rencana Tata Ruang Wilayah Provinsi Banten terkait rencana pengembangan PLTN Banten, BATAN dan pemerintah daerah telah melakukan studi tapak di wilayah calon tapak Pulau Panjang, Kecamatan Bojonegora, Kabupaten Serang, Banten. Permasalahan yang dihadapi dalam perairan laut sekitar Pulau Panjang tersebut dibahas beberapa spesies rumput laut yang diperkirakan mampu menyerap sejumlah logam dan unsur radioaktif. Penelitian ini bertujuan untuk mengetahui spesies rumput laut yang hidup di perairan sekitar Pulau Panjang, Banten, serta kandungan logam berat dan unsur radioaktifnya sebelum pembangunan PLTN. Data ini diperlukan sebagai informasi dasar pengembangan kawasan untuk calon tapak PLTN terkait penyusunan dokumen lingkungan (Amdal). Penelitian ini meliputi pengambilan sampel, identifikasi sampel rumput laut di 3 lokasi yang berbeda, serta pencatatan logam berat dan unsur radioaktif menggunakan teknik aktivasi neutron. Dari penelitian ini ditemukan 5 spesies rumput laut, yaitu Eucheuma alvarensii (Doty), Sargassum duplicatuum, Gracilaria salicornia, Padina australis dan Ulva lactuca. Rumput laut tersebut mengandung logam berat dengan konsentrasi bervariasi, yaitu Fe 221,75-6500,62 mg/kg, Zn 17,79-126,99 mg/kg, Co 2,05-9,66 mg/kg dan Cr 4,32-26,50 mg/kg berat kering. Selain itu, rumput laut tersebut juga mengandung unsur radioaktif alami 238U dan 234Th dengan konsentrasi bervariasi, yaitu masing-masing berbisa 0-2,94 Bq/kg dan 0,99-4,89 Bq/kg berat kering. Dari kelima spesies rumput laut tersebut, Ulva lactuca merupakan spesies yang paling tinggi mengandung logam berat Cr, Zn, Fe dan unsur radioaktif alami Uranium dan Thorium.

Kata kunci: logam berat, radioaktif, rumput laut, tapak PLTN, Pulau Panjang, Banten.

ABSTRACT

Based on the Banten Provincial Regulation No. 2 Year 2011 on the Spatial Plan of Banten Province related to nuclear power development plan, National Nuclear Power Agency (BATAN) and the local government have been studying the site candidate at Panjang Island, Bojonegora Subdistrict, Serang District, Banten. The problem was in the sea surrounding Panjang Island it was discovered several species of seaweeds which were able to absorb the heavy metals and radioactive elements. The aim of the research was to determine the species of seaweeds that live in the waters, as well as the heavy metals and radioactive elements they contain before nuclear power development. The data would serve as a base information of the area for nuclear power plant site development related to the environmental document (EIA) preparation. The research included sampling, identification of seaweed samples in 3 different research sites and determination of heavy metals and radioactive elements using neutron activation technique. This research found 5 species of seaweeds, namely Eucheuma alvarensii (Doty), Sargassum duplicatuum, Gracilaria salicornia, Padina australis and Ulva lactuca. These seaweeds contained varying concentrations of heavy metals, i.e. Fe 221.75 to 6500.62 mg/kg, Zn 17.79 to 126.99mg/kg, Co 2.05 to 9.66 mg/kg, and Cr 4.32 to 26.50 mg/kg in dry weight. In
addition, they also contained natural radioactive elements 238U and 232Th with varying concentrations, 0 to 2.94 Bq/kg and 0.99 to 4.89 Bq/kg in dry weight respectively. Of the five species of seaweeds, Ulva lactuca was the species that contained the most of heavy metals Cr, Zn, Fe and the naturally occurring radioactive elements uranium and thorium.

Keywords: heavy metals, radioactive, seaweeds, NPP site, Panjang Island, Banten.

PENDAHULUAN

Umumnya, unsur logam dapat tersebar luas di lingkungan akibat meningkatnya aktivitas manusia seperti kegiatan industri dan di ekosistem perairan logam dapat ditemui dalam berbagai bentuk, seperti ion bebas, ion pairing dan ion kompleks (Ferguson, 1982). Ion logam, terutama yang bersifat esensial akan terlibat dalam berbagai reaksi biologis, misalnya Fe sebagai pembawa elektron (sitokrom, protein besi-beterangan), senyawa penyimpan logam Fe (feritin, transferrin), Fe sebagai pembuah oksigen (hemoglobin, mioglobin), hidrolase Zn (karboksil peptidase), Mg (aminopeptidase), oksidoreduktase Fe (oksigenase, hidrogenase), Co (koenzim vitamin B12) (Hopkins & Norman, 1990).

Ion-ion logam dan radioaktif dalam sistem perairan dapat terserap dan terakumulasi dalam dalam biomassa makhluk hidup, membentuk senyawa kompleks organik protein yang disebut metalotionin (Ali & Walid, 2012). Rumput laut, baik jenis alga coklat, merah maupun hijau mengandung alginate yang memiliki gugus fungsional seperti karboksil, keton, karboksilat, alkil yang berkemampuan tinggi mengikat ion logam dan unsur radioaktif alami (Parthiban et al., 2012).

Pulau Panjang merupakan salah satu lokasi yang direncanakan sebagai tapak potensial PLTN di Pulau Jawa bagian barat (Suntojo et al., 2010). Saat ini lokasi tersebut memiliki aktivitas PLTU-batubara yang menghasilkan fly ash yang mengandung logam berat dan unsur radioaktif. Seperti diketahui, fly ash lepasan dari pengoperasian PLTU mengandung unsur-unsur radioaktif uranium (U), thorium (Th) dan turunanmuu polonium (Po) dan radium (Ra) (Mellawati, 2009), serta logam berat Cd, Cu, Pb, Cr, Zn, As, Ni dan Hg (Olfi Dahl, et al., 2008). Pulau Panjang yang berjarak kurang lebih 20 km dari PLTU merupakan area tempat hidupnya rumput laut (Astuty & Diana, 2013). Keberadaan logam berat dan radioaktif di perairan sekitar Pulau Panjang diduga dapat terserap oleh rumput laut, dan melalui rantai makanan (food web) berpotensi membahayakan kesuburan manusia (Mellawati, 2009). Data keberadaan logam dan unsur radioaktif dalam rumput laut ini penting sebagai data rona awal yang diperlukan untuk penyusunan dokumen lingkungan.

Penelitian ini bertujuan untuk mengetahui kandungan logam berat dan unsur radioaktif pada berbagai spesies rumput laut yang hidup di perairan sekitar Pulau Panjang, Banten. Informasi dasar ini sangat penting terkait pengembangan kawasan di wilayah tersebut, khususnya penelapaan area sebagai calon tapak PLTN.

METODOLOGI

Penelitian ini meliputi survei, pengambilan sampel, uji determinasi dan pengukuran, serta analisis sampel yang dilakukan dari bulan Juni 2012 hingga Juni 2013. Pengambilan sampel rumput laut dilakukan di perairan sekitar Pulau Panjang, Kabupaten Serang, Provinsi Banten di 3 lokasi, yaitu Stasiun 1 (106°08’16,7”E dan 5°56’24,7”S), Stasiun 2 (106°08’14,5”E dan 5°55’18,1”S), Stasiun 3 (106°10’12,8”E dan 5°56’09,2”S), pada bulan Agustus dan November 2012 (Gambar 1). Preparasi, pengukuran dan analisis sampel dilakukan di laboratorium lingkungan PATIR dan PKSEN, BATAN, Jakarta, sedangkan aktivasi netron dilakukan di reaktor G.A Siwabesyy, PRSG BATAN Serpong.

Identifikasi dan Preparasi Sampel Rumput Laut

Sebelum uji determinasi, dilakukan pengambilan sampel rumput laut secara sistematis menggunakan transek kuadrat yang terbuat dari besi berukuran 1 x 1 m di setiap stasiun. Selanjutnya, sampel sebanyak ± 2 kg (berat basah) dimasukkan ke dalam kantong plastik dan sebagian diawetkan dengan formalin 4% untuk diidentifikasi di Laboratorium Kelautan IPB Bogor dengan menggunakan buku identifikasi rumput laut (Anantharaman, 2002).
Konsentrasi logam Cr dalam rumput laut ditemukan bervariasi, yaitu berkisar 4,32-26,50 mg/kg, tertinggi ditemukan pada Chlorophyta (Ulva lactuca) dan terendah pada Rhodophyta (Tabel 2). Sukalyan et al. (2014) melaporkan kandungan Cr pada rumput laut alami dari perairan Teluk Kutch di India, pada Ulva lactuca berkisar 4,09-5,65 mg/kg, Padina 2,23 mg/kg, Sargassum 0,9-1,16 mg/kg dan Gracilaria 0,9 mg/kg. Perairan Teluk Kutch merupakan perairan padat industri, seperti industri listrik (PLTU), lahan kimia, pupuk (Sukalyan et al., 2014). Robledo & Pelegrin (1997) melaporkan konsentrasi logam Cr pada Chlorophyta alami di perairan Semenanjung Yucatan, Meksiko, yang tercecer mencapai 9,24 mg/kg, sedangkan Qari & Siddiqui (2010) melaporkan konsentrasi Cr pada rumput laut spesies Gracilaria cornea dari perairan pesisir Karahci, Lab Arab yang ditemukan mencapai 0,14 mg/kg. Secara umum, kandungan logam Cr dalam rumput laut dari Pulau Panjang lebih tinggi dibandingkan dengan yang dilaporkan dari beberapa negara lain yang diduga disebabkan oleh kegiatan antrupogenik yang ada di sekitar perairan tersebut, seperti industri pembangkit listrik.

Konsentrasi Fe dalam rumput laut bervariasi dengan kisaran 221,75-3939,75 mg/kg (Tabel 2), tertinggi ditemukan pada Chlorophyta (Ulva lactuca), Rhodophyta (Eucheuma Alvarezii (Doty) dan Gracilaria salicornia), sedangkan terendah ditemukan pada Phaeophyta (Sargassum duplexatum dan Padina australis). Sukalyan et al. (2014) mendapatkan kandungan Fe pada Ulva lactuca dari perairan Vadinar dan Sikka, Teluk Kutch, Gujarat, India, mencapai 1,256 mg/kg, pada Padina 590 mg/kg, Sargassum 865 mg/kg dan Gracilaria 124 mg/kg. Menurut Robledo & Pelegrin (1997), rumput laut Rhodophyta dan Chlorophyta mengandung Fe relatif lebih tinggi dibandingkan jenis lainnya karena logam Fe merupakan unsur hara mikro esensial dan diserap dalam bentuk ion ferri (Fe³⁺) ataupun ferro (Fe²⁺), dan hampir 80% nya terdapat dalam kloroplas atau sitoplasma. Sebagai penyusun klorofil, protein dan enzim, logam Fe berperan dalam perkembangan kloroplas, proses fotosintesis dan sebagai kofaktor enzim. Kandungan Fe pada rumput laut filum Chlorophyta dan Rhodophyta lebih tinggi dibandingkan filum lainnya. Hal ini karena Fe merupakan unsur penyusun zat hijau daun (krolofil) pada rumput laut Chlorophyta dan penyusun senyawa kompleks protein pigmen merah (fikoeitrin) pada rumput laut Rhodophyta (Robledo & Pelegrin, 1997). Secara umum, kandungan logam Fe dalam rumput laut dari Pulau Panjang lebih tinggi dibandingkan dengan yang dilaporkan dari beberapa negara lain, ada dugaan industri listrik (PLTU) memberikan kontribusi Fe dalam rumput laut.

Konsentrasi logam Zn yang ditemukan dalam rumput laut bervariasi, yaitu 15,79-126,99 mg/kg, tertinggi ditemukan pada Chlorophyta (Ulva lactuca) dan terendah ditemukan pada Rhodophyta (Gracilaria salicornia) (Tabel 2). Dagmar et al. (2004) melaporkan konsentrasi Zn dalam spesies Rhodophyta di perairan Spiddal dan Sungai Clarinbridge, Galway, Irlandia 30-115 mg/kg, sedangkan Garson (1989) melaporkan konsentrasi Zn pada Chlorophyta (Ulva lactuca) 78 mg/kg. Sukalyan et al. (2014) melaporkan konsentrasi Zn pada Ulva lactuca 146-340 mg/kg, pada Padina 29-282 mg/kg, Sargassum 30-246 mg/kg dan Gracilaria 23 mg/kg. Menurut Amini et al. (2013),

Tabel 2. Koncentration range of heavy metals in several species of seaweeds.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species/Phylum (Kimball & John, 1983)</th>
<th>Cr</th>
<th>Fe</th>
<th>Zn</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eucheuma alvarezii (Doty) (Rhodophyta)</td>
<td>4.32</td>
<td>2366.66</td>
<td>3939.75</td>
<td>26.04</td>
</tr>
<tr>
<td>2</td>
<td>Gracilaria salicornia (Rhodophyta)</td>
<td>8.05-10.64</td>
<td>2691.41-2881.74</td>
<td>15.79-25.40</td>
<td>2.28-5.42</td>
</tr>
<tr>
<td>3</td>
<td>Sargassum duplexatum (Phaeophyta)</td>
<td>10.58-17.47</td>
<td>388.63-567.66</td>
<td>37.63-41.18</td>
<td>4.53-5.93</td>
</tr>
<tr>
<td>4</td>
<td>Padina australis (Phaeophyta)</td>
<td>10.51-14.13</td>
<td>221.75-540.14</td>
<td>47.51-51.24</td>
<td>2.74-5.35</td>
</tr>
</tbody>
</table>
Padina yang tumbuh di perairan tidak tercemar mengandung Zn lebih rendah (9,63-24,99 mg/kg) dibandingkan di perairan tercemar (21,56-53,57 mg/kg). Sebagai unsur mikroesensial yang berfungsi sebagai pengaktif enzim auolase, aldolase, asam oksalat dekarboksilase, leptimasa,

Konsentrasi Co yang ditemukan pada rumput laut berkisar 2,05-9,66 mg/kg (Tabel 2). Konsentrasi tertinggi ditemukan pada Chlorophyta. Qari & Siddiqui (2010) melaporkan Co dalam Gracilaria sp. berkisar 0,004-0,4 mg/kg. Imazawa et al. (1982) dan Szefler & Skwarzec (1988) melaporkan rumput laut manfaat mengikat logam Co sebanyak 2 mg/kg dan sejumlah Co radioaktif (60Co), walaupun tidak memperlihatkan perbedaan yang signifikan antara lokasi terkontaminasi sistem desulfhidrase, histidin deaminase, super okside demutase (SOD), dehidrogenase, karbon anhidrase, proteinase dan peptidase, logam Zn juga diperlukan oleh sejumlah besar enzim dalam membentuk protein penglihatan pada transkripsi DNA (Hopkins & Norman, 1990),

Tabel 3. Kisaran konsentrasi radioaktif alami 238U dan 232Th dalam beberapa spesies rumput laut. Table 3. Concentration range of natural radioactive 238U and 232Th in several species of seaweeds.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Range of concentration (Bq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>238U</td>
</tr>
<tr>
<td>1</td>
<td>Eucheuma alvarezi (Doty)</td>
<td>Nd</td>
</tr>
<tr>
<td>2</td>
<td>Gracilaria salicornia</td>
<td>0.29-1.08</td>
</tr>
<tr>
<td>3</td>
<td>Sargassum duplicatum</td>
<td>1.09-2.35</td>
</tr>
<tr>
<td>4</td>
<td>Padina australis</td>
<td>0.15-1.62</td>
</tr>
<tr>
<td>5</td>
<td>Ulva lactuica</td>
<td>1.50-2.94</td>
</tr>
</tbody>
</table>

Note: Nd = not detected

Uranium merupakan radionuklida alami yang bersifat radioaktif, terdeteksi sebagai 238U dalam rumput laut dengan konsentrasi hervarian, berkisar 0 2,94 Bq/kg (0,24 mg/kg), konsentrasi tertinggi ditemukan pada rumput laut Chlorophyta (Ulva lactuca) dan terendah pada Rhodophyta (Eucheuma alvarezi (Doty)), yaitu 0 Bq/kg. Crompton (2007) melaporkan bahwa rumput laut mampu mengakumulasi 238U sebanyak 0,86-5,07 Bq/kg (0,07-0,41 mg/kg), sedangkan Edgington et al. (1970) melaporkan konsentrasi U dalam Chlorophyta sebanyak 0,16-1,64 mg/kg, dalam Rhodophyta sebanyak 0,18-0,61 mg/kg dan dalam Phaeophyta sebanyak 0,44-0,82 mg/kg.

Thorium adalah radionuklida alami yang diukur sebagai 232Th, ditemukan dalam konsentrasi berkisar 0,99-4,79 Bq/kg (0,27-1,28 mg/kg) (Tabel 3), konsentrasi tertinggi ditemukan pada rumput laut Chlorophyta (Ulva lactuca) dan Phaeophyta (Sargassum duplicatum). Crompton (2007) melaporkan bahwa rumput laut mampu mengakumulasi 232Th hingga 2,46 Bq/kg, sedangkan Edgington et al (1970) melaporkan bahwa konsentrasi Th dalam Chlorophyta berkisar 0,091-0,28 mg/kg, dalam Rhodophyta berkisar 0,07-0,62 mg/kg dan dalam Phaeophyta berkisar 0,13-0,19 mg/kg.

KESIMPULAN

Di perairan sekitar Pulau Panjang, Banten, ditemukan 5 spesies rumput laut, yaitu Eucheuma alvarezi Doty dan Gracilaria salicornia (Rhodophyta), Sargassum duplicatum dan Padina australis (Phaeophyta) dan Ulva lactuca (Chlorophyta). Dari kelima spesies rumput laut tersebut, Ulva lactuca merupakan spesies yang paling tinggi menyimpan logam berat Cr, Zn, Fe dan unsur radioaktif alami Uranium dan Thorium.

PERSANTUNAN

Penulis mengucapkan banyak terima kasih kepada Bapak Lurah Pulau Panjang, Bojonegara, Serang, Banten yang telah membantu kelancaran penelitian kami di perairan sekitar Pulau Panjang. Ucapan terima kasih juga disampaikan kepada Kepala Pusat PKSIN dan PATIR Batan, Jakarta, serta Kepala Bala P3UB KP KKP Palembang yang mengizinkan kami melakukan penelitian ini.
DAFTAR PUSTAKA

Sunarto, H., J. Mellawati and Yarianti. 2010. Studi pra survei Pulau Panjang Serang Banten sebagai daerah inteces PLTN. Prosiding Seminar Pengembangan Energi Nuklir III,